

Preterm microbiota: modulation and diagnostics

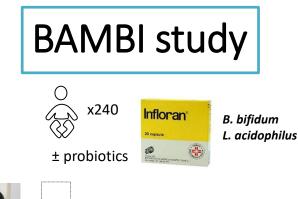
Dr Lindsay J Hall Microbiome Group Leader & Wellcome Trust Investigator

Swedish Neonatal Quality Register (SNQ) Meeting. 12th-13th March 2020

Preterm birth and the gut microbiota

- Born under 37 weeks gestation
 - Low birth weight (< 1500g)
 - 1:9 live births globally are defined as preterm
- Gut physiologically underdeveloped
- Immature immune system WON'T SOMEBODY PLEASE %)

- NICUs keeps premature infants alive
- But what about the gut microbiota?
- Disrupted normal colonisation of infant gut
 - > Reduced levels of *Bifidobacterium*
 - Hospital-aquired bacteria are not your friend...

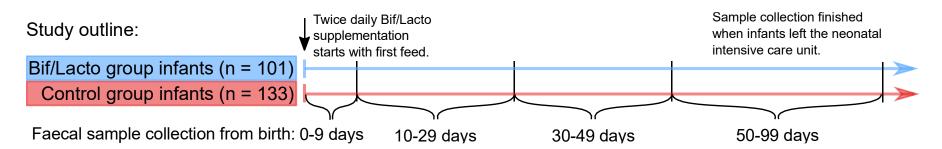

Necrotising enterocolitis (NEC)

- Aberrant colonisation appears pivotal to NEC development
 - Most common gastrointestinal emergency in NICU (5-15%)
 - huge burden in terms of mortality (40%)
 - serious long-term health problems
 - NEC linked to *Clostridium perfringens* and/or *Klebsiella pneumoniae* overgrowth

Probiotics* have shown significant value for prevention of preterm NEC

* including Lactobacillus and Bifidobacterium

Only 10/58 UK NICUs using 'probiotics'


Cristina Alcon PhD student

Dr Matthew Dalby

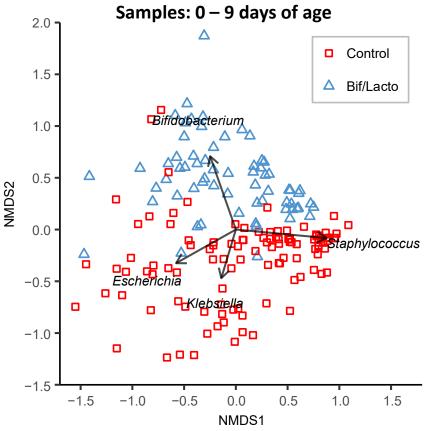
- longitudinal sampling (birth to 3 years)
- microbiota and opportunistic pathogen strain profiling
- immune & metabolite analysis
- correlate to clinical outcomes

BAMBI study – data outline for this talk

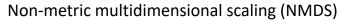
· Norfolk and Norwich Hospital

- Addenbrookes Hospital
- St Mary's Hospital

Queen Charlotte's & Chelsea Hospital


"Bif/Lacto infants"

Infants given Infloran twice daily

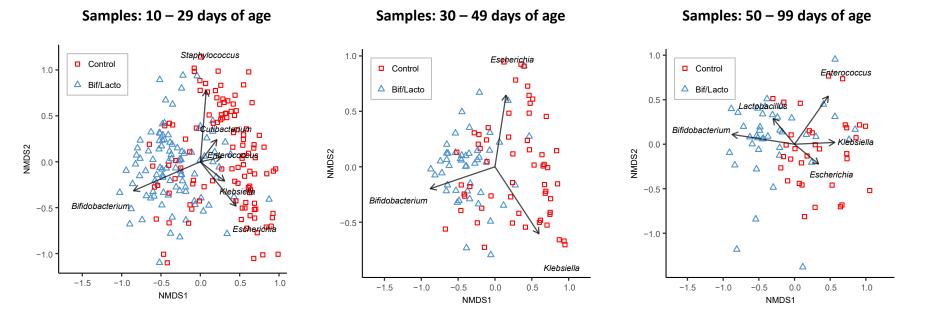

"Control infants"

Standard care with no supplemented bacteria

Does supplementation impact the preterm gut microbiota?

Compare the overall microbiota composition of all samples

Collapse information from multiple dimensions into just a few
> visualised and interpreted


Based on Bray-Curtis dissimilarity index

- A statistic used to quantify differences in populations
- Similarity based on abundance
- > Calculate the genus 'driving' the separation between groups

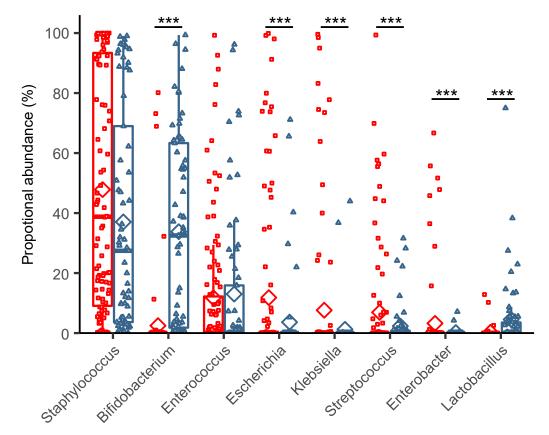
Bif/Lacto infants: Bifidobacterium

Control infants:

Staphylococcus Escherichia Klebsiella

Bif/Lacto infants cluster separately from non-supplemented infants throughout study period

*** *** *** *** 100 80 0 8 Δ ¢ Proportion (%) 60 $\Delta \Delta$ 40 8. 망 X 00 20 Δ £k 0 0-9 10-29 30-49 50-99 Time point (days from birth) Bif/Lacto Control

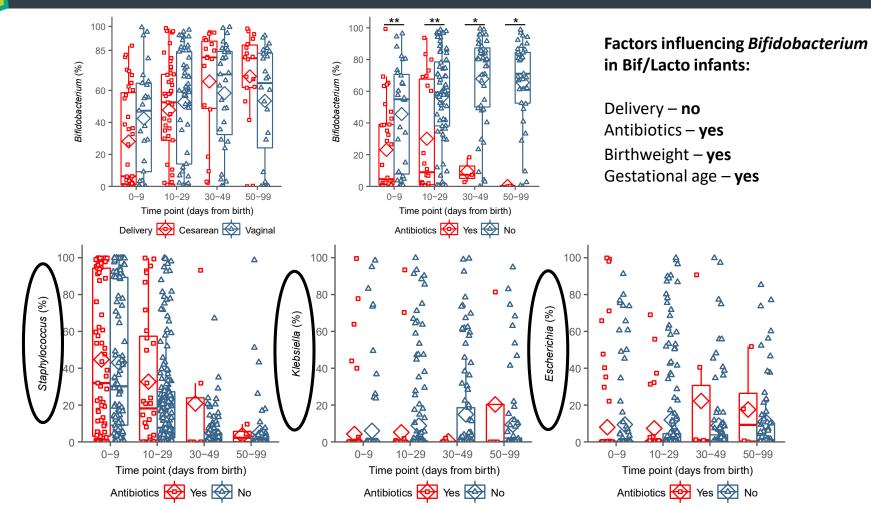

Bifidobacterium

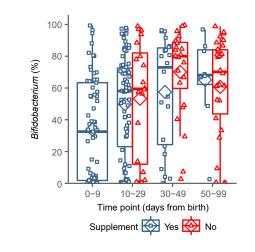
• *Bifidobacterium* relative abundance higher in Bif/Lacto at all time points

Each point is an infant sample

Box plots = median and interquartile range

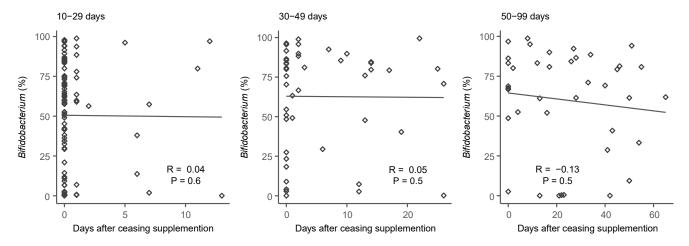
Diamonds = mean

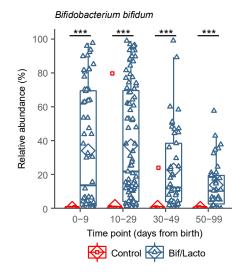

Infants: 0 – 9 days of age

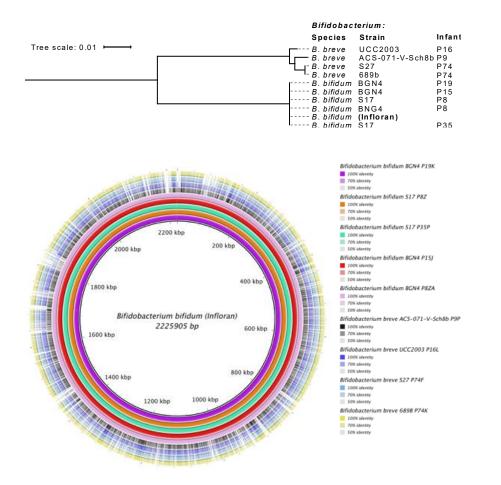

Bif/Lacto vs. Control

Lower: Escherichia Klebsiella Streptococcus Enterobacter

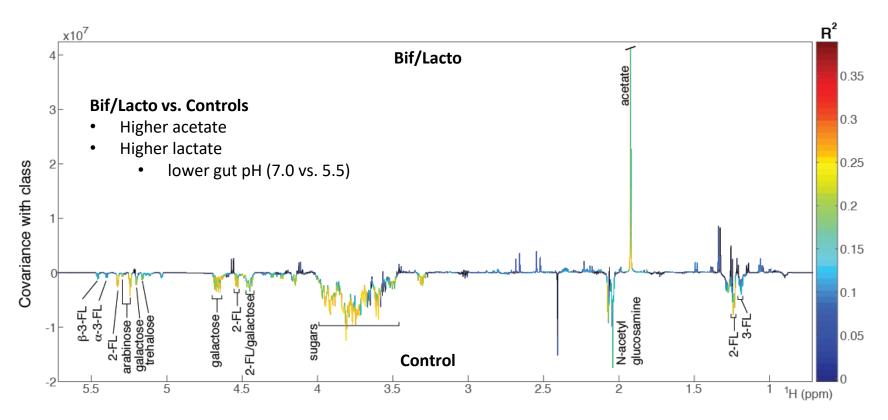
Higher: Bifidobacterium Lactobacillus

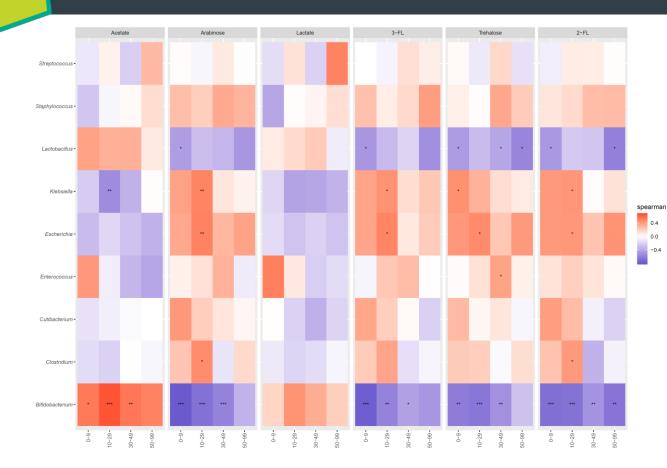

Genus




Bifidobacterium persistence after supplementation ceases?

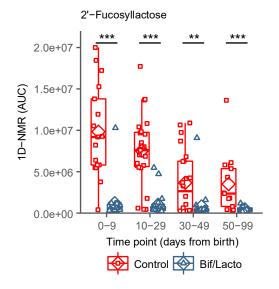
 Infloran supplementation stopped when infants reached the equivalent of 34 weeks gestational age



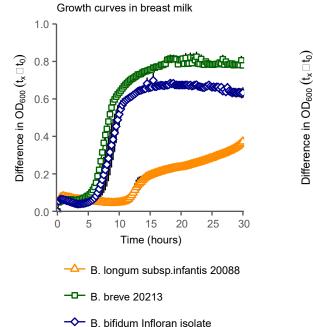

Genome analysis confirmed *B. bifidum* isolated from Bif/Lacto infant samples is identical to *B. bifidum* in Infloran

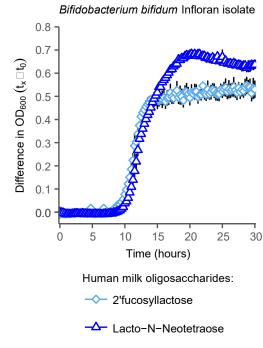
Bif supplementation alters faecal metabolite profiles

Dr Fahmina Fardus-Reid & Dr Jon Swann (Imperial College London)

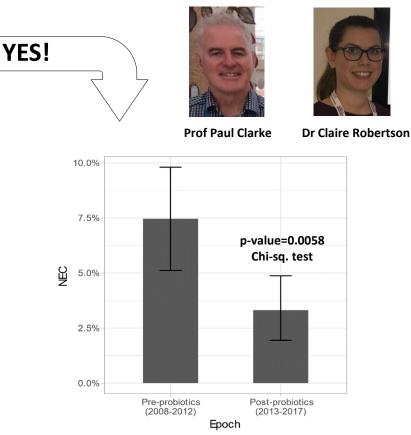

Spearman correlation heat map

- displaying main faecal metabolites (rows) versus the most abundant bacterial groups (columns)
- Red denotes positive correlation and blue denotes for negative correlation
- *Bifidobacterium* associated with
 - high levels of acetate
 - low amounts of 2-FL, 3-FL, arabinose, and trehalose
- Acetate and lactate metabolic by-products of *Bifidobacterium*
- 2-FL and, 3-FL common components of HMOs


> Does high relative abundance of *Bifidobacterium* in Bif/Lacto infants correlate with HMO metabolism?


Key point: The link to diet!

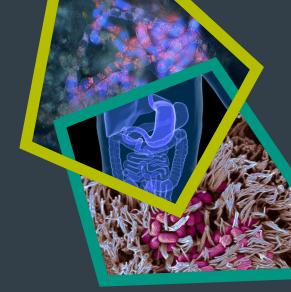
Almost all infants were given at least some mothers breast milk or donor milk


• *B. bifidum* 'probiotic' strain can utilise whole breast milk and individual HMOs for growth

Does this Bif/Lacto supplementation impact preterm health outcomes?

- Irrespective of NEC classification system used, there were significant drops in NEC rates
 - pre-Bif/Lacto: 35/469 (7.5%)
 - post-Bif/Lacto: 17/513 (3.3%)

Robertson C et al. Incidence of necrotising enterocolitis before and after introducing routine prophylactic *Lactobacillus* and *Bifidobacterium* probiotics. Archives of Disease in Childhood - Fetal and Neonatal Edition. October 2019. doi: 10.1136/archdischild-2019-317346

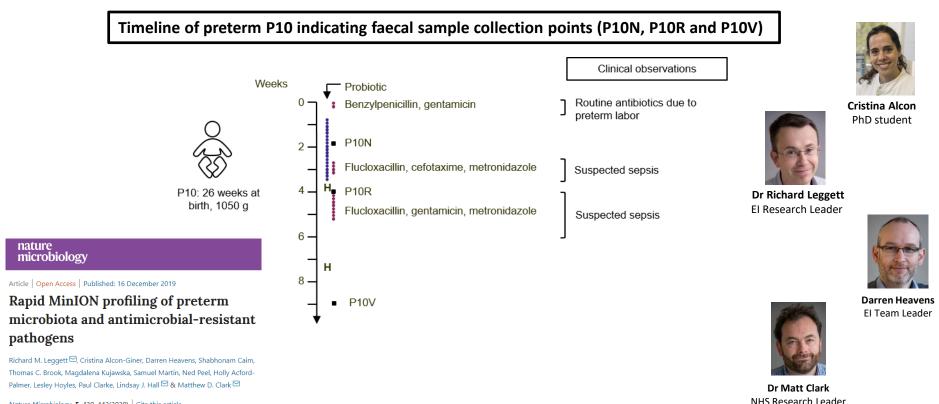

Conclusions (1)

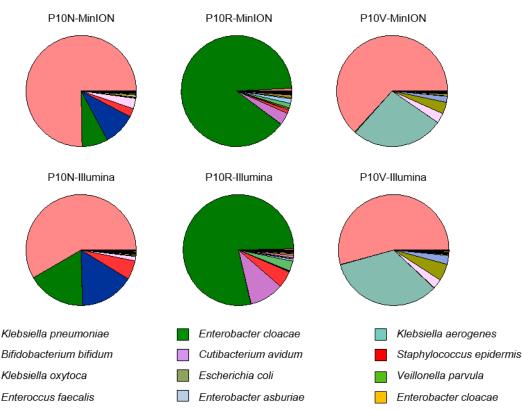
- Preterm microbiota is dominated by *Staphylococcus*, *Streptococcus*, *Enterococcus*, *Enterobacteriaceae* and *Clostridium*
- Supplementation of preterm infants with *B. bifidum* and *L. acidophilus* positively alters microbiota profiles
 - reduction in potentially pathogenic bacteria correlates with increase in Bif
 - Bif providing colonisation resistance why reduction in NEC incidence?
- *Bifidobacterium* abundance is significantly influenced by birth weight, antibiotics and diet
- Birth mode (i.e. vaginal or C-section) does not appear to influence microbiota or *Bif* composition
- >50% reduction in NEC rates since introducing Bif/Lacto supplementation
 - effect-size mirroring RCT meta-analyses and corroborating ongoing use of bacterial therapies or 'probiotics' to prevent NEC in high-risk neonates

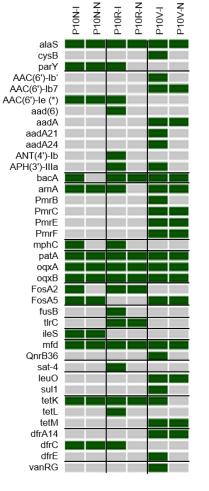
Highlights important role that *Bifidobacterium* supplementation may play in modifying early life microbiota development in order to positively impact health

Can we utilise new technologies to rapidly profile preterm microbiomes?

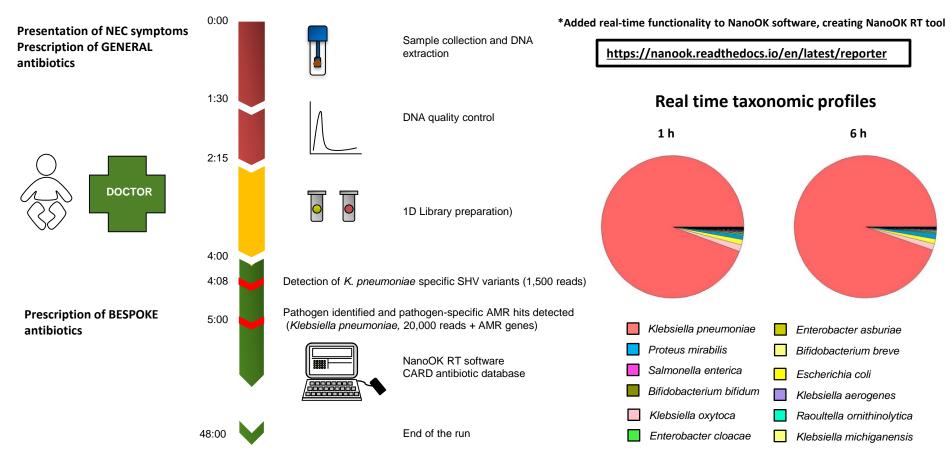
Rapidly profiling preterm microbiota for pathogen diagnostics

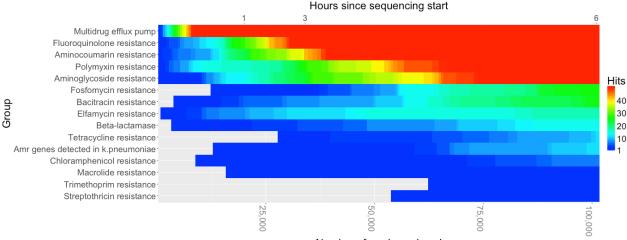

- Oxford Nanopore MinION sequencing platform offers portable and near real time DNA analysis
 - attractive for in-field or clinical deployment, e.g. rapid diagnostics


- Preterm associated NEC and sepsis are difficult to diagnose at early stages, and are often associated with sudden serious deterioration
 - most common pathogens linked include C. perfringens, group B streptococcus, E. coli, Enterobacter spp., and Klebsiella pneumoniae
 - huge rise in antimicrobial resistance (AMR) also highlights need for new technologies able to identify at-risk individuals, diagnose infectious agents, and suggest optimised treatments
- Good diagnostic method must be able to confidently identify;
 - microbes to species level for accurate diagnosis
 - species abundance within the microbiota (as these bacteria can be present within the wider community, but not cause disease when at low levels)
 - AMR gene repertoires

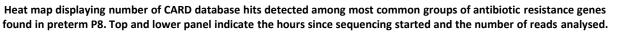

MinION can be used to profile preterm metagenomics samples

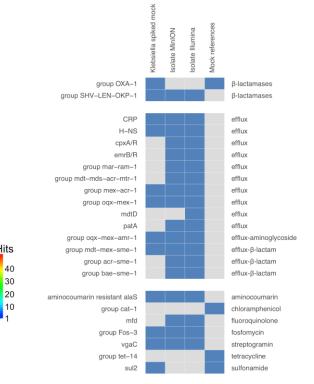
*Initially benchmarked efficacy of MinION technology by profiling a bacterial mock community of staggered abundance


MinION vs. Illumina taxonomic and AMR assignments are comparable


R7.3 flow cells

MinION + NanoOK RT allows 'real time' diagnostics




MinION + NanoOK RT allow 'real time' AMR profiling

- NanoOK Reporter 'walkout' analysis indicated ~90% of AMR genes within P8 mapped to *K. pneumoniae*
- Multidrug exporters (*acrB* and *oqxA*, conferring resistance to tetracycline, chloramphenicol, and fluoroquinolones), *vanSC* (resistance to vancomycin), and *tet 41* (resistance to tetracycline)

Number of reads analysed

Known mock community comprising 8 bacteria and P8 isolate of *K. pneumoniae* sequenced using a MinION and analysed with NanoOK RT tool.

MinION generated AMR profiles can be phenotypically validated

- Isolated *K. pneumoniae* strains from patient P8
 - performed Illumina and MinION WGS and assembly on K. pneumoniae
- AMR genes including, FosA (fosfomycin resistance), acrA, oqxA, and oqxB (efflux pumps), and SHV-185 (extended-spectrum β-lactamases, ESBLs), correlated between WGS data and walk-out analysis
- Tested antibiotic resistance phenotypes to link to AMR genotypes with commonly used antibiotics in NICUs
- K. pneumoniae had higher minimum inhibitory concentration (MIC) breakpoint value for those antibiotics that were prescribed to P8
 - benzylpenicillin, amoxicillin, metronidazole, gentamicin and vancomycin
- Data correlates with AMR data generated by NanoOK reporter and 'walkout analysis'

Antibiotic	MIC mg/L	Eucast (mg/L)
Gentamicin	3.12	2
Benzylpenicillim	780	ND
Amoxicillin	3900	>512
Metronidazole	1250	ND
Vancomycin	1562	ND
Meropenem	6.25	0.125
Cefotaxime	0.19	0.25

Conclusions (3)

- Used 20-species human microbiota mock community to demonstrate how Nanopore metagenomic sequence data can be reliably and rapidly classified
- In single patient time course, we captured the diversity of the immature gut microbiota
 - observed how complexity changes over time in response to interventions
 - probiotic, antibiotics and episodes of suspected sepsis
- Performed 'real-time' runs from sample to analysis using faecal samples of critically ill infants and of healthy infants receiving probiotic supplementation
- Real-time analysis was facilitated by new NanoOK RT software package
 - reliably identified potentially pathogenic taxa (e.g. K. pneumoniae)
 - and corresponding AMR gene profiles within as little as one hour of sequencing
 - validated using mock communities, pathogen isolation, whole genome sequencing and antibiotic susceptibility testing

Our results demonstrate that this pipeline can process clinical samples to a rich dataset able to inform tailored patient antimicrobial treatment in <5 hours

Quadram Institute

Acknowledgments

Norfolk and Norwich University Hospital

Paul Clarke Karen Few Kate McColl Addenbrookes Hospital Gustav Belteki Imperial College Simon Kroll Kathleen Sim Alex Goldwin Jon Swan Fahmina Fardus-Reid

Cambridge University Derek Pickard Gordon Dougan Quadram Institute George Savva Glycome Earlham Institute Richard Leggett Darren Heavens

<u>NHM</u> Matt Clark <u>Nottingham Trent</u> Lesley Hoyles

NC 3R^s Refii

National Centre for the Replacement Refinement & Reduction of Animals in Research

wellcome

Marie Skłodowska-Curie Actions

BBSRC bioscience for the future